A Multivariate Multilevel Gaussian Model with a Mixed Effects Structure in the Mean and Covariance Part

Baoyue Li, Luk Bruyneel and Emmanuel Lesaffre

Biostatistics department, Erasmus MC

Bayes 2013

May 23, 2013

Bayes 2013 May 23, 2013 1 / 17

Outline

- Data description and research questions
- Multivariate multilevel factor model
- Bayesian estimation and identification issue
- Application to RN4CAST data
- Some future work

The RN4CAST project

- Registered Nurse Forecasting project
- Nurse survey across Europe (2009-2011)
- 33,731 nurses in 2,169 nursing units in 486 hospitals in 12 countries
- Study the impact of system-level features of nursing care on nurse wellbeing and patient safety outcomes
 - Burnout, job satisfaction, turnover, etc.

- Three dimensions of burnout
 - Emotional exhaustion (EE)
 - Depersonalization (DP)
 - Reduced personal accomplishment (PA)
- Measured using the 22-item Maslach Burnout Inventory
 - Q: "I feel emotionally drained from my work"
 - A: 0-never; 1-a few times a year or less; ...; 6-every day
- Sum of all items within each dimension as the outcome

Distribution of burnout at each country

- Some covariates:
 - Working experience (yrs)
 - Work environment
 - Hospital size and nursing unit size
 - Teaching hospital, technology hospital
 - Type of nursing unit (surgical or medical)

- Research questions:
 - Relationship of burnout and covariates at different levels
 - If the correlations among the 3 burnout dimensions remain the same (check for inter cultural differences)
 - At each level
 - For different levels of covariates

Multivariate multilevel factor model

- Basic idea: combining two models:
 - Gaussian multivariate mixed model: to estimate the mean structure
 - Factor model: rebuild COV via the factor loadings
 - Add covariates
 - Add random effects

Multivariate multilevel factor model

• The 2-level single-factor model:

$$egin{aligned} oldsymbol{y}_{ij} &= eta_0 + eta_1 x_{ij} + oldsymbol{u}_j + oldsymbol{\delta}_{ij}, \ oldsymbol{\delta}_{ij} &= (eta_0^* + eta_1^* x_{ij}^* + oldsymbol{u}_j^*) F_{ij} + arepsilon_{ij}, \ oldsymbol{u}_j &\sim N(oldsymbol{0}, \Sigma_u), \ oldsymbol{u}_j &\sim N(oldsymbol{0}, \Sigma_u), \ F_{ij} &\sim N(oldsymbol{0}, 1), \ oldsymbol{arepsilon}_{ij} &\sim N(oldsymbol{0}, \Sigma_arepsilon), \end{aligned}$$

• The conditional COV (on random effects):

$$\Sigma = \Sigma_{\varepsilon} + (\boldsymbol{\beta}_0^* + \boldsymbol{\beta}_1^* \boldsymbol{x}_{ij}^* + \boldsymbol{u}_j^*) (\boldsymbol{\beta}_0^* + \boldsymbol{\beta}_1^* \boldsymbol{x}_{ij}^* + \boldsymbol{u}_j^*)^T$$

Multivariate multilevel factor model

Relationship between covariance/correlation and covariate

Bayesian estimation and identification issue

- Frequentist method may not be efficient
 - High dimensionality of random effects Numeric problem for integration
 - Lack of software/packages to model COV appropriately
- Bayesian method
 - Avoid numeric problem by MCMC sampling
 - Quite flexible for complex modeling

Bayesian estimation and identification issue

- Identification issue in Bayesian estimation
 - "flipping states" issue: $\Lambda F \iff (-\Lambda)(-F)$
 - A lesser problem for models without random effects (u^{*}_j) in loadings
 - This issue will be mixed up with the random effects, MCMC run will never converge
 - Solution: assign a mixture normal distribution to the loadings

Bayesian estimation and identification issues

The 2 normal distributions that form the mixture distribution for the factor loadings

Application to RN4CAST data

- 3-variate 4-level factor model
- Include all covariates in both the mean and loadings
- Random intercept at each level in both the mean and loadings
- Computational details
 - dclone package in R, 3 chains using 3 cores
 - 70,000 burnin + 30,000 iterations
 - Convergence: Brooks-Gelman-Rubin plots, *Rhat* < 1.1; *MCMC error/SD* < 5%
 - Model comparison: DIC (defined by Martyn Plummer) and PSBF

Application to RN4CAST data

- Better work environment, more working experience lead to less burnout
- Nurses working in a surgical nursing unit are more inclined to burnout than in a medical nursing unit.
- Adding covariates and random effects to COV improved the model fit largely
 - COV is different among countries, hospitals and nursing units
 - The more experienced the nurse is, the more correlation between EE and PA

Some future work

- Use the latent factor score for burnout instead of sum of the items
- Model COV at higher levels
- Relax some model assumptions:
 - Correlated random effects in the mean and loadings
 - Replace multivariate normal distribution of the random effects among the outcomes with multivariate t distribution

It is over!!!